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ABSTRACT 

Let n cells be arranged in a ring, or alternatively, in a row. Initially, all cells are 
unmarked. Sequentially, one of the unmarked cells is chosen at random and 
marked until, after n steps, each cell is marked. After the kth cell has been 
marked the configuration of marked cells defines some number of islands: 
maximal sets of adjacent marked cells. Let ~k denote the random number of 
islands after k cells have been marked. 

We give explicit expressions for moments of products of ~k'S and for 
moments of products of 1/~fls. 

These are used in a companion paper to prove that ira random graph on the 
natural number is made by drawing an edge between i >_- 1 and j > i with 
probability 2/j, then the graph is almost surely connected if2 > ~ and almost 
surely disconnected if ~ < ~. 

1. Introduction 

Suppose we have n cells arranged in a ring or, alternatively, in a row. We 
pick a cell at random and mark it; we pick one of the remaining unmarked cells 

at random and mark it; and so on until after n steps each cell is marked. After 

the kth cell has been marked, the configuration of  the marked cells defines 

some number of islands separated by seas (see Fig. 1). An island is a maximal 

set of  adjacent marked cells; a sea is a maximal set of  adjacent unmarked cells. 

Let ~k be the random number of  islands after k cells have been marked. Clearly 

~1 = ~n = 1, and for a ring of cells ~,_ 1 = 1 as well. We show that for n cells in a 
ring and 1 < k < l < n - 1 

E ~ i n g ( ~ )  ( k - 1 ) , ( n - l - 1 ) ,  
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Fig. 1. n ~ 12 cells, k = 7 marked cells, ~k = 3 islands. Numbers denote the time a cell was 
marked. 

In  pa r t i cu la r ,  fo r  all 1 < k < n - 1 

( ~ k ) =  n ! - k ! ( n - k ) !  
En~  (n --  1 ) !k (n  - k )  

a n d  

e~s ~,~2...~n-, = ~ \ n - 1 /  (n-1)------~ 

where  Ck is the  k t h  C a t a l a n  N u m b e r  

~ ° 

G k + l  

W e  will a lso show tha t  for  all 1 _-< k < n - 1 

k (n  - k)  
Erin, (~k)  = 

n - - 1  

a n d  fo r  all 1 < k < l < n - 1 

k(n  - l) k (n  - k - I)( l  - 1)(n - l)  
Ering ( ~k ~l ) = -  -~ 

n --  1 (n --  1)(n - - 2 )  

F o r  n cells in a row,  the  a n s w e r  is the  s a m e  as fo r  n + 1 cells in a ring. T o  see 

this,  b r e a k  the  r ing  a t  the  pos i t i on  o f  the  last  cell m a r k e d .  H e n c e  

( , ) ' 
E~.w ~,~2.-.~n-, =(n + 1)! =~., Cn. 

T h i s  la t te r  f o r m u l a  is used  in a c o m p a n i o n  p a p e r  [11 to  show t h a t  ce r t a in  

r a n d o m  g raphs  are  d i s connec t ed .  
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2. E~(I/(~k'''~1)) 

We give two proofs that 

( 1 ) 1 
E . . ,  . C . _ 1 .  

• ( n  - 1 ) !  

The first proof  is inductive, the second uses a more elegant counting argument. 
The more general equation can be proved using similar methods. 

2.1. An inductive proof 

A straightforward inductive attack on this problem would number  the cells 
in order 1, 2 , . . . ,  n, and would define Xk to be the number  of  the kth  marked 
cell. The sequence Xz, X2, • . . ,  X, gives a complete description of the evolution 
of  the process. This attack is unlikely to succeed, since the number  of  islands 
after k cells have been marked is a complicated function of these random 
variables. The trick in problems like this is to find a convenient partial 
description of the process under study, a description that captures what is of  
interest and that has simple probability properties. A similar trick is effective 
in problems in mechanics, where the judicious choice of a coordinate system 
can make all the difference. 

Note that if we are interested only in the number  of islands at each stage, 
then when there are exactly i islands, the sizes of these islands are irrelevant to 
the subsequent development. So we consider the situation where there are i 
islands and m cells still to be marked. Letting 

t/j = 

we observe that, conditional on the event (t/,, = i}, the random variables 
th, t/2 . . . . .  t/,,-z have a distribution that does not depend on n. So we can 
define 

and 

1 L ) - ,  
qmqm -- 1 ° ° " t/l 

( E..8 \ ¢ , " "  = f(n 1, l) 

(we can start the whole process after the first cell has been marked, since this 
must  give just one island). We shall set up and solve a recurrence forf .  

With f(m, i) as defined above, we consider what can happen when the next 
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cell is marked. There are m empty cells, and the next cell is equally likely to fall 

in each of them. The crucial step in this approach is the observation that con- 

ditional on {r/m = i ), all possible sizes of the i seas are equally likely: the pro- 

bability that when there are m cells still to be marked, there are exactly i islands 

and the sizes of  the intervening seas are {ml, m 2 , . . . ,  mr} (where necessarily 

each mj is at least 1) is independent of {m~, . . . ,  mi}. This can be shown 

formally by Bayes' theorem. It is convenient to distinguish two kinds of empty 

cells. An empty cell that is adjacent clockwise to an marked cell is called a tied 
cell. There are i such tied cells, and m - i remaining free cells (see Fig. 2). 

Fig. 2. Tied (shaded) and free ceils. 

We do not count an empty cell that is adjacent anticlockwise to an island as 

being tied to that island. With probability i/m the next cell marked is a tied cell; 

and then (using the "crucial observation" above) with probability (i - 1)/(m - 1) 

there is a marked cell clockwise from it; with probability (m - i)/(m - 1) there 

is a free cell clockwise from it. On the other hand, with probability (m - i)/m 
the next cell falls in a free cell; and then with probability i/(m - 1) the next 
clockwise cell is marked, and with probability (m - i - 1)/(m - 1) it is empty. 
This gives the recurrence 

f ( m , i ) = } ( i  i - 1  f ( m _ l , i _ l ) + m - i  ) 
(--m--~-i m i f (m - 1, i) 

m - i (  i 
+ m \-m--~-i f ( m - l ' i ) +  

m - ~ - I  

m - - I  

valid for m _-> i, with the boundary conditions f(m, m) = 1/m! since when 

m = i we must have r/j = j for j = m - 1, m - 2 . . . . .  I. 

To solve this recurrence, put 
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so that 

(m - i)! (i - 1)! 
f ( m ,  i) = a ( m  - i, m )  

m ! ( m  - 1)! 

a(d,  m )  = a(d,  m - 1) + 2a(d  - 1, m - 1) + a(d  - 2, m - 1), 

valid for d > 0, m > 1, with the boundary  condit ions 

a(0, m)  = 1. 

We recognize this recurrence as being related to binomial  coefficients. Work-  

ing out  a few values o f  a (d, m)/(2m) easily leads to the conjecture 

a ( d ' m ) = m m - - d ( 2 d )  

which does indeed satisfy the recurrence above. Thus  we have 

so that finally we have 

i 
f ( m ,  i) = (m + i)----~ w. 

( 1 ) 1 ( 2 n - 2 1 =  1 C,_1" 
E,~.s ~1" " -¢ . -1  = f ( n  - 1, 1 ) = ~ \  n _ 1 / (n - 1)-----~ 

2.2. A counting-argument  proo f  

Let ~i be the i th marked  cell. (al, • • •, a , )  is a permuta t ion  o f  { 1 , . . . ,  n}. 

Each such permutat ion gives rise to a sequence (cl, c2 . . . .  , c,)  where ci 

is the number  of  islands after the i th cell has been  marked.  Call a sequence 

(c~, c2, . . . .  Cn- 1) of  posit ive integers admissible if  cl -- c~_ 1 = 1 and any two 

successive entries differ by at most  1. Let t~, = c~ + ~ - ci be the increment  in the 

number  o f  islands when the (i  + 1)st cell is marked,  and let to -- Z~ 1 - [ t~i ]. 

The number  o f  permutat ions  that gives rise to an admissible sequence 

(cl, c2, • • •, c~_ i) is 

1.2~-16,1Cl.21-1621C2 • • .21-1~.-21c~_2.n = n 2°'clc2 • • " c,,- t. 

To see this, think o f  a child assembling a necklace o f  beads, one bead  at a time. 

The child can be working on more  than one string at once; these strings are 

kept  in a more  or less circular ring, arranged in the same order  as in the 

finished necklace. As each successive bead  is added,  it is jo ined  to any bead  
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Fig. 3. Assembling a necklace of beads. 

that it will be adjacent to in the finished necklace. Figure 3 illustrates a possible 
arrangement after the child placed seven beads, forming three strings. Suppose 
there are ci strings after the ith bead has been added. If~i = 1 then the (i + 1)st 
bead creates a new island and there are q possible new-island locations. If  
~ = - 1, then the (i + 1)st bead connects two islands and there are ct possible 
pairs of adjacent islands. If Oi = 0, then the (i + 1)st bead is added to an 
existing island and there are c, islands, each with two sides, hence there are 2ci 
ways to add the bead. Once all the beads have been placed, there are n ways to 
spin them before obtaining a recipe for assembling the necklace or, equiva- 
lently, marking the cells. 

Dividing the number of ways an admissible sequence e l , . . . ,  c, can arise by 
n !  gives the probability of the sequence: 

P((~,, - • •, ~n) -- ( c , , . . . ,  c,)) = 
2'°{, ~z'-" ~, --1 

(n - 1)! 

The expected value that we are interested in is thus 

1 )__ 1 

• ( n  - 1)! tc,,c2,...,c._,) 
admissible 

,o. 

So we just need to evaluate this sum. 
Consider all possible walks (x0 = 0, xl, . . . .  x2.=1, X2n ffi 0) on the non- 

negative integers that start from 0, go up or down 1 each time, and return 
to 0 for the first time after the (2n)th step. The number of such walks is well 
known to be 

l ( 2 n n l  ) ___1 (2n -2~__  C._,.  
2 n - 1  n k n - I /  
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Given such a walk, the sequence 

' 2 ' " '  

is an admissible sequence, and every admissible sequence arises from T ° 
different walks. Hence 

E 2'° = C~-,, 
(Cl,C2," ' ,Cn -- 1) 

admissible 

and 
( 1 )  1 

Er~ ~ l ' " ~ n - ~  = ( n  - 1)! C~_l. 

3. Further results 

For any possible sequence ~ , . . . ,  ~k of  islands in the ring, the sequence 
M ~ , . . . ,  M¢, of  sea sizes at t ime k is uniformly distributed: every positive 
sequence m ~ , . . . ,  m~ satisfying 

m i = n - k  
i - I  

arises as the value of  M~, . . . .  M~ with the same probability. Therefore, the 
sequence ~ . . . .  , ~n-~ i a Markov Chain. 

Using the uniformity Of Ml . . . .  , M~, and letting ~ def 0, it is easy to see that 

for l _ < _ k < n -  I, 

~ ( ~ -  1) 

(n  --  k ) ( n  - k + 1) 

2~(n - k + 1 - ~) 

(n  - k ) ( n  - k + 1) 

( n  - k - O ( n  - k + 1 - ~) 
(n  - k ) ( n  - k + 1) 

ifCk = ¢  -- 1, 

if~k = ~, 

if~k = ~ +  1. 

Hence, writing E for E ~  s, 

E(~K [~k-,---- ~)---- I + 

and 

n - k - 1  

n - k + l  
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n - k - 1  
(1) E ( ~ k )  = 1 + E ( ~ k _ l ) .  

n - k + l  

Solving the recurrence with E(~0) = 0 we obtain 

k ( n  - k )  
E ( ~ k )  = 

n - - 1  

Similarly, 

n - k - 1  ~ + ( n - k - 1 ) ( n - k - 2 )  
E (~  2 1 + 2  

n - k (n - k + l)(n - k) 

This, when solved, yields 

k ( n  - k )  
E ( ~  2) = 

(n - l)(n - 2) 
( k ( n  - k )  - 1). 

Equation (1) can also be used to show that  for all 1 < k < 1 < n - 1, 

Therefore 

E ( ~  I~k) = (l  - k ) ( n  - l )  -+ (n  - l ) ( n  - l - 1) ~k. 

n - k -  1 (n - k ) (n  - k -  1) 

E (  {k . ~ )  = E (  ~ k E (  ~t Ilk)) 

k ( n  - 1) 

n - 1  

k ( n  - k - 1)(l - 1)(n - 1) - - - }  
(n - 1)(n - 2)  

An alternative way of  proving that  

k ( n  - k )  
E ( ~ k )  = 

n - - 1  

is via the differences ~i - ~-~.  They satisfy 

"( n  - 0 ( n  - i - 1 )  

(n - 1)(n - 2)  

2(n - i ) ( i  - 2) 
p (  ~, - ~ ,_  ~ = , ~ ) =  

(n - 1)(n - 2)  

(i  - O ( i  - 2) 

,(n - 1)(n - 2 )  

i f J  = 1, 

i f J  = O, 

i f J  = - 1. 

T o  see  that ,  c o n s i d e r  the  p e r m u t a t i o n  a that  m a p s  i t o  the  ce l l  m a r k e d  at  t i m e  i. 
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The number  of  islands increases, decreases, or remains the same at t ime i, 
corresponding to whether i is a local min imum,  maximum, or a middle point, 
of  the inverse permutation tr -~. Since tr is distributed uniformly over all 
permutations of { 1 , . . . ,  n }, so is tr -~. The integer i is a local min imum,  
maximum, or a middle point of tr- l with the above probabilities. Therefore 

E(~i  - ~,-x) = 
n - 2 i + l  

n - - 1  

Xk( i )  = 

Then 

and the result follows. 
Yet another way to derive E(~k) is via the random variables 

if after marking k cells, cell i is marked and cell i + 1 is not, 

otherwise. 

and 

Hence 

n 

{k = Y~ Xk( i ) ,  
i = 1  

E(Xk(i)) = P((Xk(i) = I))) = - - -  

k n - k  

n n - 1  

_n k ( n  k )  1 

E(~k)  = Y. E ( X k ( i ) )  = 
i=1 n - 1  
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